Respuesta final al problema
Solución explicada paso por paso
¿Cómo debo resolver este problema?
- Integrar por fracciones parciales
- Integrar por cambio de variable
- Integrar por partes
- Integrar por método tabular
- Integrar por sustitución trigonométrica
- Integración por Sustitución de Weierstrass
- Integrar usando identidades trigonométricas
- Integrar usando integrales básicas
- Producto de Binomios con Término Común
- Método FOIL
- Cargar más...
Simplificar $\sqrt{x^2}$ aplicando la regla de potencia de una potencia: $\left(a^m\right)^n=a^{m\cdot n}$. En la expresión, $m$ es igual a $2$ y $n$ es igual a $\frac{1}{2}$
Calcular la potencia $\sqrt{1}$
Simplificar $\sqrt{x^2}$ aplicando la regla de potencia de una potencia: $\left(a^m\right)^n=a^{m\cdot n}$. En la expresión, $m$ es igual a $2$ y $n$ es igual a $\frac{1}{2}$
Calcular la potencia $\sqrt{1}$
Cualquier expresión algebraica multiplicada por uno es igual a esa misma expresión
Factorizar la diferencia de cuadrados $x^2-1$ como el producto de dos binomios conjugados
Utilizar el método de descomposición en fracciones parciales para descomponer la fracción $\frac{x}{\left(x+1\right)\left(x-1\right)}$ en $2$ fracciones más simples
Necesitamos encontrar los valores de los coeficientes $A, B$ para que se cumpla la igualdad. El primer paso es deshacernos del denominador multiplicando ambos lados de la ecuación del paso anterior por $\left(x+1\right)\left(x-1\right)$
Multiplicando polinomios
Simplificando
Asignando valores a $x$ obtenemos el siguiente sistema de ecuaciones
Procedemos a resolver el sistema de ecuaciones lineales
Reescribimos los coeficientes en forma de matriz
Reducimos la matriz original a una matriz identidad utilizando el método de eliminación de Gauss-Jordan
La integral de $\frac{x}{\left(x+1\right)\left(x-1\right)}$ en forma descompuesta equivale a
Utilizar el método de descomposición en fracciones parciales para descomponer la fracción $\frac{x}{\left(x+1\right)\left(x-1\right)}$ en $2$ fracciones más simples
Expandir la integral $\int\left(\frac{1}{2\left(x+1\right)}+\frac{1}{2\left(x-1\right)}\right)dx$ en $2$ integrales usando la regla de la integral de una suma de funciones, para luego resolver cada integral por separado
Podemos resolver la integral $\int\frac{1}{2\left(x+1\right)}dx$ aplicando el método de integración por sustitución o cambio de variable. Primero, debemos identificar una sección dentro de la integral con una nueva variable (llamémosla $u$), que al ser sustituida, haga la expresión dentro de la integral más sencilla. Podemos ver que $x+1$ es un buen candidato para ser sustituido. A continuación, definamos la variable $u$ y asignémosle el candidato
Derivar ambos lados de la ecuación $u=x+1$
Encontrar la derivada
La derivada de la suma de dos o más funciones equivale a la suma de las derivadas de cada función por separado
Ahora, para poder reescribir $dx$ en términos de $du$, necesitamos encontrar la derivada de $u$. Por lo tanto, necesitamos calcular $du$, podemos hacerlo derivando la ecuación del paso anterior
Sacar el término constante $\frac{1}{2}$ de la integral
Sustituimos $u$ y $dx$ en la integral y luego simplificamos
La integral del inverso de la variable de integración está dada por la siguiente fórmula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$
Reemplazar $u$ por el valor que le fue asignado en la sustitución en un principio: $x+1$
La integral $\frac{1}{2}\int\frac{1}{u}du$ da como resultado: $\frac{1}{2}\ln\left(x+1\right)$
Sacar el término constante $\frac{1}{2}$ de la integral
Aplicamos la regla: $\int\frac{n}{x+b}dx$$=nsign\left(x\right)\ln\left(x+b\right)+C$, donde $b=-1$ y $n=1$
Cualquier expresión algebraica multiplicada por uno es igual a esa misma expresión
La integral $\int\frac{1}{2\left(x-1\right)}dx$ da como resultado: $\frac{1}{2}\ln\left(x-1\right)$
Después de juntar los resultados de todas las integrales individuales, obtenemos
Como la integral que estamos resolviendo es una integral indefinida, al terminar de integrar debemos añadir la constante de integración $C$