Ejercicio

$\frac{dy}{dx}\:-\frac{y}{x}=\frac{x}{3y}$

Solución explicada paso por paso

1

Podemos reconocer que la ecuación diferencial $\frac{dy}{dx}+\frac{-y}{x}=\frac{x}{3y}$ es una ecuación diferencial de Bernoulli ya que se encuentra escrita de la forma $\frac{dy}{dx}+P(x)y=Q(x)y^n$, donde $n$ es cualquier número real diferente de $0$ y $1$. Para resolver esta ecuación, podemos aplicar la siguiente sustitución. Definamos una nueva variable $u$ y asignémosle el siguiente valor

$u=y^{\left(1-n\right)}$
2

Reemplazamos el valor de $n$, que equivale a $-1$

$u=y^{\left(1+1\right)}$
3

Simplificar

$u=y^{2}$
4

Despejamos la variable dependiente $y$

$y=\sqrt{u}$
5

Derivar ambos lados de la ecuación con respecto a la variable independiente $x$

$\frac{dy}{dx}=\frac{1}{2}u^{-\frac{1}{2}}\frac{du}{dx}$
6

Ahora, sustituimos $\frac{dy}{dx}=\frac{1}{2}u^{-\frac{1}{2}}\frac{du}{dx}$ y $y=\sqrt{u}$ en la ecuación diferencial original

$\frac{1}{2}u^{-\frac{1}{2}}\frac{du}{dx}+\frac{-\sqrt{u}}{x}=\frac{x}{3\sqrt{u}}$
7

Simplificar

$\frac{1}{2}u^{-\frac{1}{2}}\frac{du}{dx}+\frac{-\sqrt{u}}{x}=\frac{x}{3\sqrt{u}}$
8

Necesitamos cancelar el término que esta al frente de $\frac{du}{dx}$. Podemos hacerlo multiplicando toda la ecuación diferencial por $\frac{1}{2}\sqrt{u}$

$\left(\frac{1}{2}u^{-\frac{1}{2}}\frac{du}{dx}+\frac{-\sqrt{u}}{x}=\frac{x}{3\sqrt{u}}\right)\left(\frac{1}{2}\sqrt{u}\right)$
9

Multiplicar ambos lados por $\frac{1}{2}\sqrt{u}$

$\frac{1}{2}\sqrt{u}\left(\frac{1}{2}u^{-\frac{1}{2}}\frac{du}{dx}+\frac{-\sqrt{u}}{x}\right)=\frac{x}{3\sqrt{u}}\frac{1}{2}\sqrt{u}$
10

Expandir y simplificar. Ahora, vemos que la ecuación diferencial tiene la forma de una ecuación diferencial lineal, ya que hemos removido el término $y^{-1}$ que estaba multiplicando en la ecuación original

$\frac{1}{4}\frac{du}{dx}+\frac{-u}{2x}=\frac{x}{6}$
11

Dividir todos los términos de la ecuación entre $\frac{1}{4}$

$\frac{du}{dx}+\frac{-u}{\frac{1}{2}x}=\frac{2x}{3}$
12

Podemos darnos cuenta de que la ecuación diferencial tiene la forma: $\frac{dy}{dx} + P(x)\cdot y(x) = Q(x)$, así que podemos clasificarla en una ecuación diferencial lineal de primer orden, donde $P(x)=\frac{-1}{\frac{1}{2}x}$ y $Q(x)=\frac{2x}{3}$. Para poder resolver esta ecuación diferencial, el primer paso es encontrar el factor integrante $\mu(x)$

$\displaystyle\mu\left(x\right)=e^{\int P(x)dx}$
13

Para encontrar $\mu(x)$, primero necesitamos calcular $\int P(x)dx$

$\int P(x)dx=\int\frac{-1}{\frac{1}{2}x}dx=-2\ln\left(x\right)$
14

Asi que el factor integrante $\mu(x)$ es

$\mu(x)=x^{-2}$
15

Ahora, multiplicamos todos los términos de la ecuación diferencial por el factor integrante $\mu(x)$ y verificamos si podemos simplificar

$\frac{du}{dx}x^{-2}-2ux^{-3}=\frac{2x^{-1}}{3}$
16

Podemos reconocer que el lado izquierdo de la ecuación diferencial consiste en la derivada del producto de $\mu(x)\cdot y(x)$

$\frac{d}{dx}\left(x^{-2}u\right)=\frac{2x^{-1}}{3}$
17

Integrar ambos lados de la ecuación diferencial con respecto a $dx$

$\int\frac{d}{dx}\left(x^{-2}u\right)dx=\int\frac{2x^{-1}}{3}dx$
18

Simplificar el lado izquierdo de la ecuación diferencial

$x^{-2}u=\int\frac{2x^{-1}}{3}dx$
19

Aplicando la propiedad de la potenciación, $\displaystyle a^{-n}=\frac{1}{a^n}$, donde $n$ es un número

$x^{-2}u=\int\frac{2}{3x^{1}}dx$
20

Cualquier expresión elevada a la potencia uno es igual a esa misma expresión

$x^{-2}u=\int\frac{2}{3x}dx$
21

Resolver la integral $\int\frac{2}{3x}dx$ y reemplazar el resultado en la ecuación diferencial

$x^{-2}u=\frac{2}{3}\ln\left|x\right|+C_0$
22

Reemplazar $u$ con el valor $y^{2}$

$x^{-2}y^{2}=\frac{2}{3}\ln\left(x\right)+C_0$
23

Aplicando la propiedad de la potenciación, $\displaystyle a^{-n}=\frac{1}{a^n}$, donde $n$ es un número

$\frac{1}{x^{2}}y^{2}=\frac{2}{3}\ln\left|x\right|+C_0$
24

Multiplicar la fracción por el término

$\frac{y^{2}}{x^{2}}=\frac{2}{3}\ln\left|x\right|+C_0$
25

Encontrar la solución explícita a la ecuación diferencial. Necesitamos despejar la variable $y$

$y=\sqrt{\frac{2}{3}\ln\left(x\right)+c_0}x,\:y=-\sqrt{\frac{2}{3}\ln\left(x\right)+c_0}x$

Respuesta final al problema

$y=\sqrt{\frac{2}{3}\ln\left(x\right)+c_0}x,\:y=-\sqrt{\frac{2}{3}\ln\left(x\right)+c_0}x$

¿Cómo debo resolver este problema?

  • Elige una opción
  • Ecuación Diferencial Exacta
  • Ecuación Diferencial Lineal
  • Ecuación Diferencial Separable
  • Ecuación Diferencial Homogénea
  • Integrar por fracciones parciales
  • Producto de Binomios con Término Común
  • Método FOIL
  • Integrar por cambio de variable
  • Integrar por partes
  • Cargar más...
¿No encuentras un método? Dinos para que podamos agregarlo.
Modo simbólico
Modo texto
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Tu Tutor Personal de Mates. Potenciado por IA

Disponible 24/7, los 365 días del año.

Soluciones paso a paso completas. Sin anuncios.

Incluye múltiples métodos de resolución.

Descarga soluciones en PDF y guárdalas para siempre.

Practica sin límites con nuestro tablero inteligente.

Acceso premium en nuestras apps de iOS y Android.

Únete a 500k+ estudiantes en la resolución de problemas.

Escoge tu plan. Cancela cuando quieras.
Paga $39.97 USD de forma segura con tu método de pago.
Por favor espera mientras se procesa tu pago.

Crear una Cuenta